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SUMMARY

The hydrodynamic impact of a falling body upon a viscous incompressible
fluid is investigated by numerically solving the equations of motion. Initially
the mathematical model simulated the axisymmetric impact of a rigid right
circular cylinder upon the initially quiescent free surface of a fluid. A
compressible air layer exists between the falling éylinder and the liquid
free surface.

The mathematical model was developed by applying the Navier-Stokes equatidns
to the incompressible air layer and the incompressible flu@d. Assuming the
flow to be one dimensional within the air layer, the average velocity, pressure
and density distributions were calculated. The liquid free surface was allowed
to deform as the air pressure acting on it Increases. For Lhe liquid the
normalized equations were expressed in two-dimensional cylindrical coordinates.

The governing equations for the air layer and the liquid were expressed
in finite difference form and solved numerically! For the liquid a modified
version of the Marker-and-Cell method was used. This method, developed by the
Los Alamos Scientific Lahoratory, is especially suitable for solving time-
dependent fluid flow probleﬁs involving a free surface.

The mafheﬁatical model has been reexamined and a new approach has
recently been initiated. Essentially this consists of examining the impact
of én inclined plate onto a quiesent.water surface with the equations now

formulated in cartesian coordinates.
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INTRODUCTION

One of man's earliest serious investigations of hydrodynamic impact was
with the problem of ship slamming. He learned throughout the centuries by
experimentation that he could minimize the damage due to slamming by varying
the size, shape, supporting structure and mass of the hull. The ship slamming
phase of hydrodynamic impact is still being studied in great detail today.
Advances in technology ultimately led to a study of the impact of seaplane
floats during landing, the water impact connected with the laying of mines,
the dropp£ng of depth charges, the launching of torpedos, the dropping of
oceanographic instrument packages and more recently the water landing of
returned manned spacecraft. A knowledge of the pressure distribution during
impact is necessary to be able to design a spacecraft for landing.

The hydrodynamic impact problem is a very difficult one because the

“physies rof -what actually happens ﬂuring'the*iﬁstant=of-impact5“¢5jnot-understood.
Many theoretical studies have been reported and in general did not closely
agree with experimental results, |

Part I describes the approach used in the initial stages of the
investigation using a cylindrical coordinate system with a cylindrical body
falling vertically downward along the Z axis with the lower surface of the

- body perpendicular to the Z axis and parallel to the water surface. Even with
a deflecting water surface the singularities associated with high pressures
at impact were always present.

Part II describes a reevaluation of the problem which took place
in January.l872 with a view to understanding the basic impact phenomena. The
main_hhéngeé are (1) the problem is set up in cartesian coordinates instead
of cylindrical coordinates; this removes problems originating at the origin
where ghe radius is zero (2) the infinite flat plate approaches the water

surface at a small angle. Thus the impact conditions are not as severe as



in the original case. It is hoped that the results can be extrapolated

to the case where the angle is zero.



LITERATURE SURVEY

Von Kafmen (1) was one of the first to investigate {impact in his 1929
study of the impact on seaplane floats during landing. When conservation_of
momentum is applied at impact, the body velocity is found to decrease and the
total mass to increase due to water set in motion by the body. This increase
in mass was called the "added apparent mass." Chu and Abramson (2) provided
Van excellent review and bibliography on the theories of hydrodynamic impact
through 1961. They suggested consideration of compressibility effects during
the initial stage of impact and the use of numerical techniques. Jénsen
and Rosenbaum (3) developed a mathematical model to study water impact of the
Mercury Spacé Capsule by modifying Von Karmen's theory. The spherical bottom
qf the capsule was represented by a series of wedges with a 10° deadrise angle.
It was found that accelerations obtained frqm this matheﬁatical model were
initially less than those obtained experimentally for vertical impact.

Moran (4) published a detailed survey of hydrodynamic impact theories
through 1964. He stated that the inelusion of compressibiiity effects removed
some of the glaring defects of the earlier theories but compressibility of
the water is not very importaﬁt for the water-entry of a blunt - or round-nosed
body at low speeds. He recommended the consideration éf a finite air layer
" between the body and the water. Because th; free surface at the impact point
has already accelerated to the body speed the inclusion of air demsity effects
eliminates the abrupt velocity change at impact. This velocity discontinuity
is responsible for the infinite pressures found in earlier impact theories.

Li and Sugimura (5) presented'an analysis of the water impact of the
Apollo Command Module in 1%67. The impact of a rigid sphere upon a quiescent
incompressible inviscid sea was assumed. 'A compression wave was considered

at the first point of impact to prevent am infinite initial impact pressure.



>The answer was given in the form of an infinite power series. Verhagen (6)
presented an excellent publication on the investigation of the impact of an
infinite flat plate when droﬁped vertically on an undisturbed water surface.
A compressible inviscid air layer is assumed to exist between the plate and
water surface. The water is considered incompressible. A deformable free
surface is considered and impact is said to take place when the deformed free
surface touches the edge of the plate. Verhagen fOuﬁd that impact appears

to take placé when the air velocity at the edge of the plate almost reaches
acoustic velocity. The pressure distribution was smoothgd to prevent
singularities in the mathematical evaluation of the problem.

Kurland (7) in 1968, presented a‘¥eview and comparison of all model and
theoretical studies involving water landing loads on the Apollo Command Module.
Lewison and Maélean (8) investigated the impact between a rigid flat~plate and
a free water surface with a compressible air layer. They postulated that the
compression of the air under the plate sets the water surface in motion
downwards and eventual impact occurs with vanishing relative velocity and
hence infinite pressures do not occur.

Experimental tests on hydrodynamic impact are reported in references 9
through 14. The impact phase-of the Apollo Command Module wére studied in
1964 by Herting, Pollack and Pohlen (9). Fgll scale boiler plates were used
to investigate the pressure loads on the craft during impact and the flﬁtation
‘characteristics after impact. Bensoq (10) in 1965 compared full-scale and
model data obtained on the Apollo Module during watef impact using a modified
von Karman analysis. Theoretical and model studies compared favorablyh
In 1266 Chuang (1l1) investigated rigid flat-bottom body slaﬁming by dropping
steel plates from various heights above a calm water surface. He found
that because of the effect of the trapped air between the félling body and

the water, maximum impact pressure was much lower than expected if the generally



accepted acoustic pressure formula were applied. Baker and Westine t12) in
1966 studied water impact of the Apollo Module using 1/4.5 scale mo&els.
Data obtained from heavily instrumented models was compéred with results of
full scale experiments yielding good predictions of pressures, acceleration,
displacementé ard impact velocity. In 1967 Chuang (13) dropped flat-bottomed
and wedge—-shaped bodies from various heights and found that maximum p?essures
occurred before the water came in contact with the impact surface of the flat
bottom. For models with a deadrise angle of 3° or greater, most of the air
escaped at fhé moment of impact. With a smaller ﬁeadrise angle, relatively
large amounts of air were trapped to give a cushioning effect.

Thompson (14) investigated the rough wéger landing characteristics of a
‘Gemini—type spacecraft in 1967 using a 1/6 scaie model. Gerlach (15} in
late.l§67,,experimentaily investigated the iﬁportance of alr density and other
real fluid properties.with respect to the water impact of small bluat rigid
. bodies. He found that the restrictioﬁ of airflow reduced the peak impact

pressure and that 'a small amount of air is actually trapped under the model.
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Part I
THEORY
The case under consideration is that of a rigid right circular cylinder
falling axisymmetrically toward the quiescent free surface of a viscous in-
compressible liquid. 'The.cylinder of radius Rp is initially a distance h
above the free surface and is falling with a current downward velocity of vp(t)
as shown in fipure 1. A compressible air layer exists between the falling
cylinder and'the free surface. The behavior'of the compressible air layer is
studied as the cylinder approaches the free surface. The effect of the air
layer on the liquid free surface and pressure and velocity fields is detgrmined.
The problem is simulated by holding the cylinder stationary and moving the
entire mass of ligquid toward the cylinder.
Since the system is axisymmetric a two-dimensicnal system is utilized.

The governing equations are
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The origin of the moving coordinate system is attached to the center of

the base of the falling projectile (see figure 2) and hence
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Variables without subscripts are variables in the moving coordinate system

The equations (1), (2) and (3) become
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Defining dimensionless parameters as
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The equation for the pressure distribution is determined from equations

{(12) and (13) and becomes
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‘Initial and boundary conditions

The following conditions exist at time zero. A thin layer of compressible
air of constant thickness h is between the clindrical body and the liquid.
The entire mass of liquid is moving upwards with a velocity Qp. Hydrostatic
pressures exist throughout the liquid.
- The boundary conditions prior to impact are shown in figure 3. During and
after impact the boundary conditions are shown in figure 4.

Properties of the air layer

As the cylinder falls, the air rushes from beneath it. 'The outward air
velocities become quite large as the cylinder approaches the free surface and
the thickmess of the layer becomes small. It is assumed that the compressible

. n . E
air behaves such that pv = k where 1§ n€£ O.

The continuity equation for a compressible air layer is
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Substituting

bo(py K o
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and expressing the time derivative in explicit form
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The average radial component of air velocity Ua is obtained by applying the
R-direction momentum equation to the air layer which after simplification

becomes .
P @%c\+ WeoWa :_B_Pa+ Le _'bw(.kab (18)
1 OR 2R R 2

Solving for the term BUa/BT

Q_Uaz..-‘—?.bi—- 'i-?f‘* +._\;f E:QC’L (19
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'The air velocity distribution is obtained by integrating equation (19)

Iexplicitly.

The deceleration of the projectile is found by applying Newton's law of
motiqn. Before impact the deceleration force is that due to the air pressure
in the air layer. After impact the retarding force is that due to water
pfeSSure in contact with the bottom of the projectile and the viscous drag of
the liquid surrounding the projectile as it penetrates below the water sur-

face. The velocity of the projectile is then found from

V, = V - C’Ldt - (20)

and the change in air layer thickness is

AR = -—-\/P Af | (21)
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COMPUTATIONAL DETAILS

The equations for the air layer and the water are set up in finite dif-
ference form as described in the MAC report (reference (16)). The two
components of velocity, u and v, are determined explicitly. It was found
that, for any cell, the components of velocity did not satisfy the continuity
equation. In order te ensure that this equation was satisfied the v component
was found from equation ({1) and the u component from equation (i2).

The order of calculations, stated briefly, are

Define air and liquid properties

I
E; from equation (i7)

Ua from equation (|9)

P from equation (ib)

Determine deceleration of projectile

!

Determine velocity of projectile

Determine air layer thickness

- — e e e e —

Determine pressure distribution in water equation (14)

v

Determine v component of velocity-equation (i1)

¢

Determine u from equation (172)

Determine if impact has taken place

Move liquid markers and find new free surface of fluid
N

Many details involving free surface treatment, marker movement: ,

cell flagging, velocity feflections are found in the basic MAC Report.

The compressible air layer is used to generate pressuré and velocity
boundary conditioﬁs in the free surfacelbefore impact and used in the
calculation of the free surface velocity and deformation.

It is to be noted that all variables are calculated explicitly which
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'automatically means that the time step of integration is very small. In the
initial stages of the problem solution several hundred time cycles may be
executed 1n the air layer before the air pressures increase enough above
atmospheric pressure to influence the behavior of the liquid free surface.
During this ﬁart of the problem sclution it is not neéessary'to enter the
liduid caleculations until many cycles in the air layer are completed. Once
the pressures, densities and velocities in the air layer begin to build up,
they increase very rapidly with time. This rapid buildup limits the magnitude
of the time step.

As the projectile became close to the water surface the velocity of the
outflow of the air became large resulting in a relatively large velocity
gradient at the water surface. This was allowed to act on the water sur-
face in order to produce radial motion of the water at the surface.

Because the area of most interest is that adjacent to the impact zone,
experiments were.performed with a wariable mesh, using a fine mesh near the
‘origin of coordinates and an increasingly coarse mesh as the spatial variables
mﬁved'away from the origin. However as the stable time limié is decided by
the smallest mesh size this procedure was abandoned and a constant mesh size

in each direction was used.
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IMPACT CONDITIONS

The conditions that prevaii iﬁmediately before or at impact is not known.
Thé problems of velocity &iscontinuities and infinite pressures at the impact
surface have always been present in hydrodynamic investigations. The pressures
in the air layer increases as the projectile approaches the watgr'surface
and the water surface is depressed. However, none of the existing theories
prevented the velocity singularity occuring, i.e., at the position where con-
tact between.the projectile and the water took place the vertical component
of velocity had two different values at the same time.Lewison and Maclean (8 )
were the first to state that the condition of impact was when the relative
velocity between thg cylinder and free surface becomes zero. However in-
spite of numercus numerical experimenté involving grid size and time interval,
the velocity discontinuity always existed. Because of the entrapped air 5
contact initially took place around the peripheny of the prbjectile, the water
surface below the projectile being concave up. The air layer pressures in-
creased rapidly as the body became nearer :the surface being always a maximum
on the centerline and decreasing radially ocutwards. In spite of many numerical
expefiments there was always a relative velocity between the body and the

The.

adjacent water surface. Tf when initial contact took plécekyelocity of the
water surface was instantaneously made equal to the projectile velocity and
continuity satisfied by recalculating the radial velocity in the surface cell
the pressures near the projectile hecame negative!

It is felt that future work should be concentrated on ascertaining the

conditions prevailing immediately before and at impact.
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EXPERIMENTAL WORK

Experimenté were initiated to investigate the motion of the water during
impact and hence derive a distribution of pressure by numerically integrating
the equations of motion.

A large rectangular tank was constructed from lucite and filled with water
to a depth of three feet. A right circular cylinder was used as the falling
object with its axis parallel to the water surface. It was sufficiently long
so that at the vertical center line plane two dimensional motion would be
accurately obtained. A number of colored beads was suspended‘in the water at
this centerline plane. The impact of the falling cylinder impacted on the
water surface causing the water to be.displaced together with the suspended
colofed particles. The motion of these particles was recorded by high speed
motion film photography. Frame by frame examination of this film Qould
_-enable .the wvelogity .components to be determined.

Experimental tests did not prove satisfactory for the féllowing'reasons.
(aj There was always a small movement of the suspended particles. It proved

impossible to find particles with exacfly the same density as water.

(b) ‘The-particles couid not be constrained to move in one vertical plane.

(¢) The particles had to be sufficiently large for photographic pufposeé and
consequently did ﬁét behave as a water particle. This was evident when
the projectile hit a particle at or near impact. The particle was
projected through the water.

(d) The projectile could not be dropped so that the axis was perpendicular
to tﬁe plane containing the particles. Thus three diménsional particle

motion was obtained -
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Part II

The configuration now being investigated is that of an infinite
-flat plate as shown in Figure.S. There is symmetfiﬂﬁbgut the center ‘line
and hence only one half of the field needlbelinvestigated. The shape of
Vthe lower surface of the projectile can be any defined mathematical function
including a flat plate for which experimental results are readily available.
A moving coordinate system is no longer being used and the origin of the
coordinate surface is on the original water surface.

‘It iz absolutely essential to congider a defleeting water surface.
A configuration_as shown in figure 6 with two perfectly parallel surfaces
and a compressible air layer will not impaect. As the surfaces approach each
_o;her, the air pressure, (which is proportional to L@f }s increases sufficien—
tly so that the projectile is slowly decelerated and brought te rest.

.By .making the following assumptions (a) .the pressure does not vary
"acress the air gap (b) there is no flow in the % direction i.e. an infinitely
wide plate and (c) inertia terms can be neglected as compared with the
viscous terms, the equations for the compressible air layer are very similar
to those used in squeeze film air lubricated bearings. These have been ex-
tensively studied-see, for example, the book by W.A. Gross, "Gas Film Lub-

rication", John Wiley and Sons. The equations for the pressure in the air

o) 2y 2 (gl oh - ¢ U2y~ (22

2% 2

film becomes

[I).}u DA
(P/h) = K
? -1y
The equations for the water are the Navier-Stokes equations im
carterian coordinates. The Marker -and- Cell method was found to be time

consuming. The velocities at the free surface will be calculated from Navier-

™
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Stokes equation so that the air gap can be continousiy calculated.

To date numerical e#periments have confirmed the fact that two
perfectly parallel surfaces will not fmpact. Numerical results are currently
being obtained using equation (22) for the case of a deformable lower surface

i.e. for a water surface.
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CONCLUDING REMARKS

No consistert fésﬁlﬁé%wgre‘obtained due to the velocity singularity which
" occurs at impact conditions. Before further progress can be made it is
absolutely necessary to determine the basic physical phenomena‘of what happens
at conditions of hydfodynaﬁié impact. 1Is there a velocity singularity? If

so, how can this be handled mathematically? Does the relative velocity go to
zero? Should the. compressibility of the water be considered? Does contact
take place at a certain point and surface tension become important? What
happens to any air trapped in the center because contact takes place first near
the edge of the projectile?

It is also considered that only a carefully controlled experimental in-

 vestigation will yield a physical picture which can then be used in a numerical

Qolution. Certain experimental difficulties have already been discussed.
It is to be noted that the mathematical model was an extreme case in which the
bottom of the projectile was pa;allel.to the initially calm water surface.
Any real body would fall at an angle with contact occurring oﬁ a finite single
area.

By considering an inclined plate it is expected that these questions will

be answered.
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